A Grassmann-Rayleigh Quotient Iteration for Dimensionality Reduction in ICA

نویسندگان

  • Lieven De Lathauwer
  • Luc Hoegaerts
  • Joos Vandewalle
چکیده

We derive a Grassmann-Rayleigh Quotient Iteration for the computation of the best rank-(R1, R2, R3) approximation of higher-order tensors. We present some variants that allow for a very efficient estimation of the signal subspace in ICA schemes without prewhitening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces

The classical Rayleigh quotient iteration (RQI) allows one to compute a one-dimensional invariant subspace of a symmetric matrix A. Here we propose a generalization of the RQI which computes a p-dimensional invariant subspace of A. Cubic convergence is preserved and the cost per iteration is low compared to other methods proposed in the literature.

متن کامل

M ar 2 00 8 Two - sided Grassmann - Rayleigh quotient iteration ∗

The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a pair of corresponding left-right eigenvectors of a matrix C. We propose a Grassmannian version of this iteration, i.e., its iterates are pairs of p-dimensional subspaces instead of one-dimensional subspaces in the classical case. The new iteration generically converges locally cubically to the pairs of left-right p-dimen...

متن کامل

Two-sided Grassmann-Rayleigh quotient iteration

The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a pair of corresponding left-right eigenvectors of a matrix C. We propose a Grassmannian version of this iteration, i.e., its iterates are pairs of p-dimensional subspaces instead of one-dimensional subspaces in the classical case. The new iteration generically converges locally cubically to the pairs of left-right p-dimen...

متن کامل

On the Relationships Between Power Iteration, Inverse Iteration and FastICA

In recent years, there has been an increasing interest in developing new algorithms for digital signal processing by applying and generalising existing numerical linear algebra tools. A recent result shows that the FastICA algorithm, a popular state-of-the-art method for linear Independent Component Analysis (ICA), shares a nice interpretation as a Newton type method with the Rayleigh Quotient ...

متن کامل

Local Convergence Analysis of FastICA

The FastICA algorithm can be considered as a selfmap on a manifold. It turns out that FastICA is a scalar shifted version of an algorithm recently proposed. We put these algorithms into a dynamical system framework. The local convergence properties are investigated subject to an ideal ICA model. The analysis is very similar to the wellknown case in numerical linear algebra when studying power i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004